Can You Take the Heat? Miller 3D Prints Fixtures to Withstand Scorching Temperatures

3D printing applications are seemingly endless. Today, automotive companies 3D print to shred operating costs, retailers 3D print to reduce waste, doctors 3D print to save lives. It’s remarkable how materials such as nylon, fiberglass and Kevlar can be 3D printed and applied to push the boundaries of innovation.

Miller 3D was given the opportunity to push the boundaries of innovation, manufacturing parts using some of the world’s strongest materials that also maintain integrity when exposed to blistering heat.

3D print fixtures heat temperature

Mark X printing the Astronics’ fixture

A local company, Astronics Corporation, a leading supplier of advanced technologies and products to the global aerospace, defense and semiconductor industries, recently had the need for fixtures to support one of their upcoming projects. Astronics’ engineers approached Miller 3D with a project that would ultimately be manufactured with Markforged 3D printed materials. 

“Due to the high mechanical properties of Markforged materials, we were able to successfully 3D print many of the required fixtures to fit Astronics’ needs”, Matt Jones, Manager at Miller 3D, explains.

The machine responsible for bringing these fixtures to life is the Mark X, a large 3D printer that can focus down to a 50-micron resolution and build high-strength, precision end-use parts from materials like carbon fiber, or in this case, Onyx.

For reference, the diameter of a human hair is 50 microns, 40 microns is considered the lower limit of visibility of a human eye, and a 25-micron resolution is necessary to see white blood cells.

3D Printed Fixture made from Onyx

3D printed fixture made from Onyx

Astronics’ fixtures were printed out of Onyx, which is a chopped carbon fiber nylon mix reinforced with high temperature fiberglass. 

Matt adds that continuous fiber high temperature fiberglass was key in maintaining part accuracy and preventing warping during the heating process.

So, how hot? The parameters that these fixtures needed to withstand were 180 degrees Celsius or 356 degrees Fahrenheit for approximately two hours. The Astronics engineers were also able to include geometry into this fixture that could only be 3D printed, not machined, that improved the functionality of the fixture.

A case where engineers can manufacture to true design intent and drastically reduce the cost and timeframe using 3D printing.